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Abstract. In certain circumstances, it is advantageous to use an optimization approach in order to solve the
generalized eigenproblem, Ax = λBx , where A and B are real symmetric matrices and B is positive definite. In
particular, this is the case when the matrices A and B are very large and the computational cost, prohibitive, of
solving, with high accuracy, systems of equations involving these matrices. Usually, the optimization approach
involves optimizing the Rayleigh quotient.

We first propose alternative objective functions to solve the (generalized) eigenproblem via (unconstrained)
optimization, and we describe the variational properties of these functions.

We then introduce some optimization algorithms (based on one of these formulations) designed to compute
the largest eigenpair. According to preliminary numerical experiments, this work could lead the way to practical
methods for computing the largest eigenpair of a (very) large symmetric matrix (pair).
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1. Introduction

In certain circumstances, it is advantageous to use an optimization approach in order to solve
the generalized eigenproblem, Ax = λBx , where A and B are real symmetric matrices and
B is positive definite. In particular, this is the case when the matrices A and B are very
large and the computational cost, prohibitive, of solving, with high accuracy, systems of
equations involving these matrices. We shall assume that the problem is to compute one
extreme eigenvalue (the largest or smallest) and an associated eigenvector. The reader is
referred to [12] and [16] for the practical motivation of such assumptions and the reasons
why problems of this type may prevent the direct use of standard techniques such as power
and Lanczos methods (see [8]) which require solving, with high accuracy, a system involving
the matrix B at each iteration. However, the optimization approach, which usually involves
optimizing the Rayleigh quotient (for instance, with the conjugate gradient method) does
apply under the above assumptions, since it only involves matrix-vector multiplications.
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Therefore, we are considering a class of problems for which no factorization is practicable.
See [10] for a complete bibliographical review of conjugate-gradient-like methods for eigen-
like problems. For recent surveys of the state of the art on large eigenvalue problems in the
general (nonsymmetric) case, see [3] and [17].

In order to simplify the presentation, we shall restrict our attention to the problem of
computing the largest (or smallest) eigenvalue of a symmetric matrix A (i.e. we consider
the case B = I ). However, as we shall see, these alternative objective functions can easily
be adapted for solving the generalized eigenproblem Ax = λBx . Moreover, we shall
assume A to be positive definite. The method can be adapted to deal with the case where
the matrix has non-positive eigenvalues (for µ large enough, the matrix A + µI is positive
definite).

We present in the next section alternative objective functions (to solve the eigenproblem
via unconstrained optimization) which are not homogeneous. Some of these functions have
been introduced by Auchmuty in [2] but remain apparently unknown by the numerical
analysis community. We further introduce a new optimization formulation of the eigen-
problem. One of our purposes is to review (and introduce one new) objective functions as
good alternatives to the Rayleigh quotient for computing eigenelements via (unconstrained)
optimization. We describe the variational properties of these functions. A nice property of
these variational principles is the non-singularity of their Hessian at a minimum point (under
a weak condition which is always satisfied in practice). This feature allows us, in Section 3,
to specialize standard and recent optimization techniques for minimizing these objective
functions into efficient methods for computing the largest eigenpair. Limited-memory ap-
proaches will prove to be especially well suited to our large-scale context. According to
preliminary numerical experiments, this work leads the way to practical methods for com-
puting the largest eigenpair of a (very) large symmetric matrix (pair). We conclude in
Section 4.

The remaining of this introduction sets the terminology and notation required. Throughout
the paper, ‖·‖ denotes the usual Euclidean norm, 〈·, ·〉 is the usual inner product 〈x, y〉 =
xT y, A denotes an n-by-n real symmetric matrix with eigenvalues

λ1 ≥ λ2 ≥ · · · ≥ λn−1 ≥ λn,

and Sn(R) represents the sets of real symmetric matrices. The spectrum of a matrix A ∈
Sn(R) is denoted by

spec(A) := {λ1, λ2, . . . , λn−1, λn},

Eλ represents the eigenspace associated with the eigenvalue λ, while Sλ denotes the set
of unitary eigenvectors associated with the eigenvalue λ. We shall use ln to denote the
natural logarithm. Note that in this paper, when we talk about a positive definite matrix, we
assume that the matrix is symmetric. When talking about critical points at which a function
is nonsmooth, we mean critical point in the generalized sense of nonsmooth analysis [6].
We shall say that a function f (x) is coercive if it tends towards infinity with the norm
of x .
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2. Variational principles for the largest eigenvalue of a real symmetric matrix

Our first aim is to analyze some functions whose global minima are precisely the eigenvec-
tors of A associated with the largest eigenvalue of A. We shall see in fact that the critical
points of these functions give the eigenvectors of A. Undeniably, the best known function
having such properties is the standard Rayleigh quotient, RA(x), defined by

RA(x) := 〈Ax, x〉
‖x‖2

. (1)

In fact, since for x �= 0 the gradient of the Rayleigh quotient is given by

∇ RA(x) = 2

‖x‖2
[Ax − RA(x)x],

the (non-zero) critical points of RA are precisely the eigenvectors of A, and hence the critical
points corresponding to a given eigenvalue form a space whose dimension is equal to the
multiplicity of this eigenvalue. Also, even in the case of a simple eigenvalue, RA has an
infinity of corresponding critical points (a subspace of dimension one). This is due to the
homogeneity of the Rayleigh quotient, i.e. RA(αx) = αRA(x), for any x ∈ R

n, α ∈ R. The
critical points corresponding to the largest (respectively smallest) eigenvalue are global
maxima (respectively minima) of RA, any other critical point being a saddle point. It is
an acknowledged fact that the presence of saddle points can make the optimization more
difficult. The homogeneity of the Rayleigh quotient seems therefore to be an undesirable
feature of RA as an objective function in order to compute an extreme eigenvalue via
optimization (if x is a saddle point of RA, then so is any αx , α ∈ R\{0}). Note that one
could alternatively consider the constrained optimization problem

max
‖x‖=1

〈Ax, x〉 (2)

in order to compute the largest eigenvalue of A. However, the nonlinearity of the constraint
makes this optimization problem less attractive.

Auchmuty [1] proposed in the eighties some new unconstrained variational principles for
finding various eigenvalues and eigenvectors of a real symmetric matrix. The functions he
described have, as does the Rayleigh quotient, critical points related to specific eigenvalues
and eigenvectors. Although these different formulations provide interesting alternatives to
the standard Rayleigh quotient, they apparently remain unknown to the numerical analysis
community.

We propose to recall these functions and their main properties. In the sequel, we will as-
sume that A is positive definite. Firstly, consider SA : R

n → R (S for Square root) defined by

SA(x) := ‖x‖2 − 2
√

〈Ax, x〉. (3)

As for the Rayleigh quotient, RA, this function is smooth on R
n\{0}. However, we shall

further see that the non-smoothness at 0 causes no practical difficulty when minimizing SA

(or RA) with a descent method. The next result is due to Auchmuty [1 ,Theorem 3].
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Theorem 2.1. Let A be a positive definite matrix, and SA be defined in (3). Then
(i) SA is coercive on R

n with

min
x∈Rn

SA(x) = −λ1.

The minimum is attained at any
√

λ1e1, where e1 ∈ Sλ1 ;
(ii) The set of critical points of SA is {0} ∪ {√λkek | ek ∈ Sλk , k = 1, . . . , n}. Moreover, if

λk �= λ1,
√

λkek is a saddle point.

Note that SA is not differentiable at x = 0. By computing the directional derivative of SA

at x = 0 in any direction d ∈ R
n\{0}: S′

A(0, d) = −2
√〈Ad, d〉, one can show in fact that

the origin is a local maximum of SA.
In order to compute an extreme eigenpair of the generalized eigenproblem, Ax = λBx ,

one rather optimizes

SA,B(x) := 〈Bx, x〉 − 2
√

〈Ax, x〉.

In [2], Auchmuty suggested another function whose differential properties are related to the
spectral properties of a positive definite matrix. He considered the function PA : R

n → R

(P for Polynomial) defined by

PA(x) := ‖x‖4 − 2〈Ax, x〉. (4)

This function is smooth on R
n , since it is a polynomial. The variational properties of PA

are summarized in the following theorem [2, Theorem 1]:

Theorem 2.2. Let A be a positive definite matrix, and PA be defined in (4). Then
(i) PA is coercive on R

n with

min
x∈Rn

PA(x) = −λ2
1.

The minimum is attained at any
√

λ1e1, where e1 ∈ Sλ1 ;
(ii) The set of critical points of PA is {0} ∪ {√λkek | ek ∈ Sλk , k = 1, . . . , n}. Moreover, if

λk �= λ1,
√

λkek is a saddle point of PA.

Note that x = 0 is a local maximum of PA.
We now propose a new variational principle for finding the largest eigenvalue of a positive

definite matrix. Let L A : R
n\{0} → R (L for Logarithm) be the function defined by

L A(x) := ‖x‖2 − ln(〈Ax, x〉). (5)

Note that, contrary to SA and PA, L A is not defined everywhere on R
n . However, it is

smooth at any x ∈ R
n\{0}. It is worth noting that L A(x) increases to +∞ as x goes to

zero. Then, any reasonable descent algorithm for minimizing this function should avoid the
non-differentiability. We summarize the results concerning L A in the following theorem.
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Theorem 2.3. Let A be a positive definite matrix, and L A be defined in (5). Then
(i) L A is coercive on R

n with

min
x∈Rn\{0}

L A(x) = 1 − ln λ1.

The minimum is attained at any x ∈ Sλ1 ;
(ii) The set of critical points of L A is

⋃
1≤k≤n Sλk . Moreover, the elements of

⋃
1<k≤n Sλk

are saddle points of L A.

Proof: For any x , we have 〈Ax, x〉 ≤ λ1‖x‖2. Hence

L A(x) ≥ ‖x‖2 − ln(‖x‖2) − ln λ1.

This proves the coercivity of L A.
Since L A is continuous and coercive on R

n\{0}, and since limx→0L A(x) = +∞, a (finite)
minimum is attained for L A. The gradient of L A is given by

∇L A(x) = 2

(
x − Ax

〈Ax, x〉
)

. (6)

Thus, the critical points of L A satisfy the equation

Ax = 〈Ax, x〉x . (7)

This shows that a critical point x is an eigenvector corresponding to the eigenvalue λ :=
〈Ax, x〉. Taking the inner product of (7) with x , we then get

〈Ax, x〉 = 〈Ax, x〉‖x‖2.

Thus ‖x‖ = 1, i.e. x is a normalized eigenvector. Moreover, the critical value corresponding
to such an x is

L A(x) = 1 − ln(〈Ax, x〉) = 1 − ln λ.

By differentiating (6), one obtains the Hessian of L A,

∇2L A(x) = 2

[
In − 〈Ax, x〉A − 2(Ax)(Ax)T

〈Ax, x〉2

]
.

Let ek be a critical point of L A corresponding to λk . We complete ek with vectors ei , 1 ≤
i ≤ n, i �= k, into an orthonormal set of eigenvectors of A, {e1, . . . , en}, corresponding
respectively to λ1, . . . , λn . Thus,

∇2L A(ek)ei =

 2

(
1 − λi

λk

)
ei , if i �= k;

4ek, else.
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Thus, ∇2L A(ek) is positive semidefinite if and only if λk = λ1. Moreover, ∇2L A(e1) is
positive definite if and only if λ1 is a simple eigenvalue.

Contrary to the function PA, which is well defined for any symmetric matrix A (irre-
spective of whether A is positive definite or not), both functions L A and SA require A
to be positive definite. Assume now that A is not positive definite. What about the vari-
ational properties of PA in this case? The results are almost the same as the ones given
in Theorem 2.2. The only difference is that the critical points reduce to the eigenvectors
corresponding to positive eigenvalues. When A has no positive eigenvalue (A is semidef-
inite negative), then the only critical point of PA is zero, which is then also the global
minimizer. Auchmuty thus suggested the following function which depends on a parameter
µ ∈ R:

PA,µ(x) := ‖x‖4 − 2〈(A − µIn)x, x〉.

From this variational principle, on can find the eigenvalues of A greater than µ and the
associated eigenvectors. The properties of PA,µ are the same as those of PA, except that the
critical points are now (zero and) the eigenvectors associated with the eigenvalues larger
than µ. If there are no such eigenvalues, zero is the unique critical point and also the
global minimizer. Such a principle may be interesting if one knows a value µ between
λ1 and λ2. Thus, any minimization algorithm applied to PA,µ will “easily” converge to
an eigenvector corresponding to λ1 (in the sense that all saddle points—but zero— are
discarded).

Note finally that although we only described above how one can obtain the largest
eigenvalue (and corresponding eigenvector) of a given real symmetric matrix, one can
straightforwardly adapt the formulations for computing the smallest eigenvalue. For in-
stance, using the L A formulation, one first subtracts a sufficiently large multiple of the
identity from the given matrix in order to obtain a negative definite matrix A. Then the
smallest eigenvalue of the given matrix will be obtained through the minimization of L−A.
One can similarly use the other formulations in order to compute the smallest eigenvalue
(for the Rayleigh quotient, it clearly simply suffices to minimize RA instead of maximizing
it).

We compared numerically the performance of the three formulations, involving the ob-
jective functions SA, PA, and L A, which we presented above, for the computation of the
largest eigenvalue, with that involving the Rayleigh quotient, RA. The set of test matrices
consisted of the 19 non-diagonal positive-definite matrices of dimension up to 6000 from
the Matrix Market [13]. We used a limited-memory BFGS algorithm (software L-BFGS
[11]) in order to solve the optimization problems. All formulations performed similarly
with a slight advantage for formulations SA and RA (more details can be found in [14]).
Homogeneity does not appear to be a serious shortcoming of the Rayleigh quotient func-
tion. In the next subsection, however, we shall show that our non-homogeneous variational
principles have some special features so that powerful algorithms from optimization can
be used in order to design efficient methods for computing the largest eigenpair of a real
symmetric matrix.
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3. Optimization algorithms for computing the largest eigenpair
of a real symmetric matrix

This section is devoted to the design of numerical algorithms for estimating the largest
eigenpair (i.e. the largest eigenvalue and a corresponding eigenvector) of a (very) large real
symmetric matrix. In a first step, our approach consists of applying classical algorithms
from numerical optimization to one of the non-standard variational formulations presented
in Section 2. Next, we exploit the particular structure of our cost function in order to improve
the performance of these algorithms. As we shall see, this leads to well-known methods in
numerical analysis such as the power method and the Rayleigh quotient iteration, as well as
new (to our knowledge) techniques which are competitive with (in our large-scale context)
methods such as the Lanczos algorithm (see [8] for an introduction to these methods).

Henceforth, we shall concentrate our attention to the following function

PA(x) := 1

4
‖x‖4 − 1

2
〈Ax, x〉. (8)

The gradient and the Hessian of this function are given by

∇ PA(x) = ‖x‖2x − Ax,

∇2 PA(x) = ‖x‖2 In + 2xxT − A.

Some differential properties of this function are described in Theorem 2.2. It should be
noted that any of the formulations considered in Section 2 could be used in order to derive
the numerical algorithms we are about to present. For the sake of simplicity, we illustrate
our ideas solely on formulation (8).

3.1. Steepest descent for computing the largest eigenpair

The steepest descent method is certainly the simplest algorithm in optimization. It is divided
into two steps:

Algorithm 1 (Steepest descent)
Choose x0 ∈ R

n. For k ≥ 0 do
• Compute the steepest descent direction dk := −∇ f (xk);
• (Line search) Compute an acceptable new iterate xk+1 from xk and dk.

Despite its simplicity, this method can sometimes be very slow, and is rarely used in
practice. When applied to PA, this yields the following algorithm:

Algorithm 2 (Steepest descent for computing the largest eigenpair)
Choose x0 ∈ R

n. For k ≥ 0 do
• Compute dk := Axk − ‖xk‖2xk ;
• (LS) Compute an acceptable new iterate xk+1 from xk and dk.
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We will discuss in detail the line-search problem in a subsequent subsection. We state a
convergence result for this method.

Theorem 3.1. If we use an exact line search, then for any x0 ∈ R
n, the sequence {xk}

generated by the steepest descent algorithm applied to PA converges linearly to an eigen-
vector of A. If, moreover, xk converges to

√
λ1e1, and if λ1 is simple, then the convergence

ratio is given by

τ = 1 + c

3 − c
where c = λ2

λ1
.

Proof: Noting that the spectrum of ∇2 PA(
√

λ1e1) is given by

2λ1 > λ1 − λn ≥ · · · ≥ λ1 − λ2,

we refer the reader to [9] for a convergence result for the steepest descent method applied
to a general smooth function f .

In practice, under the condition that x0 is not orthogonal to e1, the above algorithm
(with a satisfactory line-search procedure) converges to an eigenvector associated with the
largest eigenvalue. Note also that this method is closely related to a classical algorithm in
numerical analysis: the so-called power method, which is well known to converge linearly
(with convergence ratio λ2/λ1) to an eigenvector corresponding to the largest eigenvalue
(under the assumption that λ1 is simple, and that the initial iterate has a non-null component
in the e1 direction).

3.2. Newton’s method for computing an eigenpair

Contrary to the steepest descent method, Newton’s algorithm is considered as a very fast
algorithm because of its quadratic rate of convergence. However, it is much more expensive,
since it requires solving, a possibly ill-conditioned linear system of equations at every
iteration. Another disadvantage of Newton’s method is that it is not globally convergent.

Let f be a twice continuously differentiable function. Newton’s algorithm is divided into
two steps:

Algorithm 3 (Newton’s method)
Choose x0 ∈ R

n. For k ≥ 0 do
• Solve ∇2 f (xk)dk = −∇ f (xk);
• Set xk+1 := xk + dk.

A key condition to ensure the (local) quadratic convergence of the above algorithm is the
non-singularity of the Hessian at the solution x∗. If ∇2 f (x∗) is singular or ill-conditioned,
the Newton equation cannot be reliably solved when xk is closed to x∗.

The Hessian of PA is non-singular at stationary points (precisely the eigenvectors of A,
ek , satisfying ‖ek‖2 = λk) if and only if the corresponding eigenvalue is simple. Indeed, if
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ek is an eigenvector of A satisfying ‖ek‖2 = λk , then

∇2 PA(ek)ei =
{

(λk − λi )ei , if i �= k,

2λkek, otherwise.

Thus, Newton’s method can be safely applied to PA. This yields the following (local)
quadratically convergent algorithm:

Algorithm 4 (Newton’s method for computing an eigenpair)
Choose x0 ∈ R

n. For k ≥ 0 do
• Solve (‖xk‖2 In + 2xk xT

k − A)dk = Axk − ‖xk‖2xk ;
• Set xk+1 := xk + dk.

It is important to note that the Rayleigh quotient, because of its homogeneity, is sys-
tematically singular at critical points (even if the eigenvector is associated with a sim-
ple eigenvalue). This feature prevents the use of this formulation for any Newton-like
method. This point is our main motivation in considering non-homogeneous formula-
tions whose differential properties are related to the eigenpairs of a real symmetric
matrix.

In order to improve the above algorithm, we can add an additional (free) step, namely a
radial minimization which consists in:

Given any x ∈ R
n\{0}, find r̄ solving the one-dimensional problem

min
r≥0

PA(r x).

A straightforward computation yields r̄ = 〈Ax,x〉1/2

‖x‖2 .
Thus, we can replace the second step of Algorithm 4 with

yk+1 := xk + dk ;

xk+1 := 〈Ayk+1, yk+1〉1/2

‖yk+1‖2
yk+1.

The following theorem proves that, by adding the radial minimization step to the above
Newton algorithm, we obtain a (local) cubically convergent algorithm.

Theorem 3.2. The Newton algorithm for computing an eigenpair with the radial mini-
mization is equivalent to the Rayleigh quotient iteration algorithm. As a consequence, it is
cubically convergent.

Proof: First, note that the radial minimization induces that ‖x‖2 = RA(x) (we drop the
subscript k). Therefore, the Newton equation can be written as follows

d = −
(

A − RA(x)In − 2RA(x)
xxT

‖x‖2

)−1

(A − RA(x)In)x .
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Set B := A − RA(x)In (B is invertible if and only if x is not an eigenvector). Now, the
Shermann-Morrison-Woodbury formula [9] implies[

B − 2RA(x)
xxT

‖x‖2

]−1

= B−1 + 2RA(x)

σ‖x‖2
B−1xxT B−1,

where σ = 1 − 2RA(x) 〈B−1x,x〉
‖x‖2 , and thus,

d = −x + α(A − RA(x)In)−1x, where α = −2RA(x)

σ
.

Finally,

y = x + d = α(A − RA(x)In)−1x,

which corresponds to the Rayleigh quotient iteration algorithm [8].

The above theorem tells us that, in theory, Newton’s algorithm with radial minimiza-
tion is equivalent to the Rayleigh quotient iteration algorithm (RQI). However, in practice
both methods behave quite differently. Remember that at every step of RQI, we solve the
following system of equations

y = (A − RA(x)In)−1x .

When x converges to an eigenvector, the matrix A − RA(x)In becomes more and more ill-
conditioned; thus, solving the above system requires more and more computational work.
Also, note that since (generally) λ1 < RA(x) < λn , the matrix A− RA(x)In is never definite
(even near a solution). This prevents the use of cheap methods for solving the above equation
(such as, for instance, the conjugate gradient algorithm).

Our Newton method does not suffer from these drawbacks. Indeed, the matrix −(A −
RA(x)In − 2RA(x) xxT

‖x‖2 ) is always well conditioned in the neighbourhood of an eigenvector
associated with a simple eigenvalue. If x = ek , its condition number is equal to (we assume
for the sake of simplicity that A is positive definite)



max{2λk, λ1 − λk}
min{λk−1 − λk, λk − λk+1} , if 1 < k < n,

2λ1

λ1 − λ2
, if k = 1,

max{2λn, λ1 − λn}
min{2λn, λn−1 − λn} , if k = n.

Moreover, if x = √
λ1e1 with ‖e1‖ = 1, i.e. if the algorithm converges to a minimizer of PA,

and if λ1 is simple, the above Newton matrix is positive definite, and thus will remain positive
definite in a neighbourhood of the minimizer. This feature is the key to all the algorithms
we consider in the next subsections. However, there still remains fundamental drawbacks
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in our Newton algorithm. Despite its very fast convergence, it is not a globally convergent
algorithm. Moreover, nothing guarantees that convergence will occur to a minimum point.
Finally, each iteration requires solving with high accuracy, a linear system of equations with
a different matrix. This is generally not desirable if the matrix is very large.

In the next subsection we describe some adaptations of the previous (basic) algorithm
which avoid the two pitfalls mentioned above. The approaches we consider will lead to two
globally convergent algorithms which are particularly well suited for estimating the largest
eigenpair of a (very) large real symmetric matrix.

3.3. A quasi-Newton method for computing the largest eigenpair

As indicated in the previous subsection, Newton’s method has two major disadvantages: it
is a local method, and it requires solving a linear system of equations at every step. Quasi-
Newton algorithms have been designed to circumvent these two difficulties. The main idea
in these methods is to update at every iteration an (preferably symmetric positive definite)
approximation of the Hessian. In general, a quasi-Newton algorithm is coupled with a line-
search procedure (such as the Wolfe line-search) to ensure its global convergence. In this
section, we do not discuss line-search strategies (this will be considered in detail below);
we assume that we have at our disposal a procedure which produces an acceptable new
iterate from the current iterate and the current direction.

Classically, a quasi-Newton algorithm builds a pair of vectors (yk, sk) at every iteration,
where yk := ∇ f (xk+1) − ∇ f (xk) and sk := xk+1 − xk , and uses this pair to update a
(inverse of the) Hessian approximation which is forced to satisfy the following quasi-
Newton (sometimes called secant) equation: Mk+1sk = yk (or Hk+1 yk = sk , if one wants to
approximate (∇2 f (xk+1))−1).

This comes from the fact that it is generally not desirable (or possible) to compute the
Hessian at every iteration. However, this is not true in our situation, since the Hessian only
involves (in a simple way) the matrix A and the current iterate. This particular feature leads
us to build a more adapted approximation of the inverse of the Hessian.

Quasi-newton methods usually use past and current information produced by the algo-
rithm to build up a satisfactory approximation of the (inverse of the) Hessian. We denote by
di , i = 0, 1, . . . , k, the search directions constructed by a minimization algorithm (we set
d0 := x0). Moreover, we assume that we have also computed the vectors Adi , i = 0, 1, . . . , k
(this assumption is always satisfied). Thus, at iteration k + 1, we have at our disposal k + 1
pairs (di , Adi ). A natural question, is how to build an “optimal” approximation of the (in-
verse of the) Hessian at xk+1, i.e. exploiting as much information contained in these pairs
as possible. Remember that

∇2 f (x) = ‖x‖2 In + 2xxT − A. (9)

Thus, it suffices to provide an estimate for A. We could use, for instance, the BFGS or DFP
updates or their multi-secant version [5] to approximate A. However, for convenience, we
propose the following (simpler but efficient) choice:

Bk+1 = (
In − Rk RT

k

)
B(k)

0

(
In − Rk RT

k

) + Rk Tk RT
k ,
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where B(k)
0 is a (varying) initial approximation of A, Rk is a matrix whose columns form

an orthonormal basis of the subspace spanned by the previous search directions (di , i =
0, 1, . . . , k), Tk := RT

k ARk is the projection of A onto the above-mentioned space. Thus,
the matrix Bk+1 is the sum of the “known part” of A (the term Rk Tk RT

k ), and the “unknown
part” of A given by the first term. We only consider initial matrices of the form B(k)

0 = γk In ,
γk ∈ R, and thus Bk+1 can be written as follows

Bk+1 = γk
(
In − Rk RT

k

) + Rk Tk RT
k .

From (9), this approximation naturally induces the following estimate of ∇2 f (xk+1):

Mk+1 = ‖xk+1‖2 In + 2xk+1xT
k+1 − Bk+1,

which yields in turn an estimate Hk+1 of (∇2 f (xk+1))−1. Indeed,

Hk+1 = M−1
k+1 = (

[‖xk+1‖2 − γk]
(
In − Rk RT

k

)
+ Rk[‖xk+1‖2 I − Tk]RT

k + 2xk+1xT
k+1

)−1
.

Now, since xk+1 lies in the subspace spanned by the search directions, there exists (a unique)
vk such that xk+1 = Rkvk , and thus, assuming that γk �= ‖xk+1‖2,

Hk+1 = (
[‖xk+1‖2 − γk]

(
In − Rk RT

k

) + Rk
[‖xk+1‖2 I − Tk + 2vkv

T
k

]
RT

k

)−1

= 1

‖xk+1‖2 − γk

(
In − Rk RT

k

) + Rk
[‖xk+1‖2 I − Tk + 2vkv

T
k

]−1
RT

k , (10)

since the columns of Rk form an orthonormal basis. We assumed above that the reduced
matrix ‖xk+1‖2 I − Tk + 2vkv

T
k is invertible, which is reasonable to expect in

practice.
It is important to note that Mk+1 (and thus Hk+1) is not guaranteed to be positive definite

(since the reduced matrix ‖xk+1‖2 I − Tk + 2vkv
T
k may not be positive definite). However,

there is a simple way to render this approximation of the Hessian positive definite. Indeed,
it suffices to consider the following perturbation of Mk+1:

M̂k+1 := Mk+1 + [c − ‖xk+1‖2]In

= [c − γk]
(
In − Rk RT

k

) + Rk
[
cI − Tk + 2vkv

T
k

]
RT

k ,

where c > λmax(Tk), and to choose a scaling factor γk satisfying γk < c (for instance,
γk := λmin(Tk)). The inverse of M̂k+1 exists and is given by

Ĥk+1 := M̂−1
k+1 = 1

c − γk

(
In − Rk RT

k

) + Rk
[
cI − Tk + 2vkv

T
k

]−1
RT

k .
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However, contrary to Mk+1, M̂k+1 does not satisfy the curvature condition

RT
k M̂k+1 Rk = RT

k ∇2 PA(xk+1)Rk .

Thus, by coercing M̂k+1 to be positive definite, we have lost the main thing: the approxi-
mation M̂k+1 does not reflect the local behaviour of the Hessian.

Is it essential in our situation to approximate ∇2 PA(xk+1) with a positive definite matrix
when far from the solution? The key argument in unconstrained optimization is that positive
definite estimates of the Hessian ensure the direction −Hk∇ f (xk) to be a descent direction.
This is important when using a line search requiring an approximate minimization of the
original cost function on a half line. However, as we shall see in Section 4.5, we find it prefer-
able to use a line-search procedure based on the minimization of PA on a whole subspace.
Thus, imposing the search direction to be a descent direction is not crucial in our situation,
and hence, it is not essential to force the approximation of the Hessian to be positive definite.

Every iteration of our quasi-Newton algorithm requires the following operations:

• Update the orthonormal basis of the search subspace, Rk , as well as Sk := ARk ;
• Update the projection of A onto Rk , i.e. update Tk := RT

k ARk ;
• Compute the inverse of the reduced matrix ‖xk+1‖2 I − Tk + 2vkv

T
k .

These different updates should be done as follows:
At step k + 1, let Rk , dk , Adk , Sk , and Tk be given;

Update of Rk :

• Compute r̂ k+1 := dk − Rk RT
k dk ; if ‖r̂ k+1‖ �= 0, set rk+1 := r̂ k+1/‖r̂ k+1‖, and Rk+1 :=

[Rk rk+1]; otherwise, set Rk+1 := Rk .

Update of Sk := ARk :

• if ‖r̂ k+1‖ �= 0, set Sk+1 := [Sk sk+1], where sk+1 = Adk−Sk (RT
k dk )

‖r̂ k+1‖ ; otherwise, set Sk+1 :=
Sk .

Update of Tk := RT
k ARk : if ‖r̂ k+1‖ �= 0, set

Tk+1 :=
(

Tk RT
k Ark+1

r T
k+1 ARk r T

k+1 Ark+1

)
=

(
Tk ST

k rk+1

r T
k+1Sk r T

k+1sk+1

)
,

where sk+1 denotes the last column of Sk+1; otherwise set Tk+1 := Tk .
In order to state the resulting algorithm, let us rewrite (10) as

Hk+1 = 1

‖xk+1‖2 − γk

(
In − Rk RT

k

) + Rk�k RT
k , where

(11)
�k := [‖xk+1‖2 I − Tk + 2vkv

T
k

]−1
.

Remember that radial minimization induces ‖xk‖2 = RA(xk).
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Algorithm 5 (QN method for computing the largest eigenpair)
Choose x0 ∈ R

n\{0}, set R−1 := x0/‖x0‖, S−1 := Ax0/‖x0‖, T−1 := RA(x0), and
�−1 := 1/2.
For k ≥ 0 do
• Compute dk := −Hk[RA(xk)xk − Axk] (using formula (11)), and update

Rk−1 → Rk (as indicated above);
• Compute Adk, and update Sk−1 → Sk and Tk−1 → Tk (as indicated above);
• Line search: Compute an acceptable new iterate xk+1 from xk and dk ;
• Compute Axk+1, RA(xk+1), vk := RT

k xk+1, and �k (defined in (11)).

Note that we have not specified the value of the scaling factor γk in the above algorithm.
We could use, for instance, scaling strategies proposed in [11], but we do not go into broader
detail since this is beyond the scope of the present work.

It is important to observe that every iteration of the above algorithm requires only one
matrix-vector multiplication involving A. At step k, the storage requirements are:

– storage of two k-by-k matrices (Tk and �k);
– storage of two n-by-k matrices (Rk and Sk);
– storage of four n-vectors (xk , Axk , dk , and Adk).

Some computational savings could certainly be made but, again, we do not go into further
detail.

Unfortunately, except for standard quasi-Newton matrix updates, such as BFGS and DFP,
there are very few convergence results, and the existing ones are quite poor (see for instance
[9] for convergence results for quasi-Newton algorithms). However, all our experiments
show that the above algorithm always converges to the largest eigenpair with a superlinear
rate of convergence (this is a characteristic of quasi-Newton methods).

3.4. A truncated Newton algorithm for computing the largest eigenpair

Truncated Newton methods [7] were introduced (in the eighties) as an alternative to quasi-
Newton methods for solving (very) large optimization problems. The basic idea is as follows.
For the computation of the search direction, it is not necessary (and generally not desirable
or, even, not possible for large problems) to solve the Newton equation with high accuracy,
especially when far from the solution. In fact, any descent direction will suffice when the
objective function is not well approximated by its convex quadratic model. However, in
order to ensure fast local convergence, more and more effort is required for solving the
Newton equation as we approach the solution.

Now, the question is: how to solve (approximatively) the Newton equation? Keep in
mind that we are interested in solving very large equations, where direct methods (gener-
ally involving the factorization of the Newton matrix) cannot be applied. Thus, we must
rely on iterative methods for linear systems requiring only matrix-vector multiplications.
Remember that our Newton matrix is guaranteed to be positive definite only in a neigh-
bourhood of a minimum point (under the assumption that λ1 is simple). This may preclude
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the use of the conjugate gradient algorithm (CG), which requires a positive definite ma-
trix. However, according to the above discussion on the truncated Newton method, we
may use CG even in the first steps of the algorithm and stop the CG algorithm when-
ever a breakdown occurs (since we only require a descent direction, when far from the
solution).

From now on, the (truncated) Newton iteration will be referred to as the outer iteration,
whereas the CG iteration (for solving the Newton equation) will be referred to as the inner
iteration.

An essential question that remains is the choice of stopping criteria for CG. The CG
process should be stopped if any of the following situations occur:

(i) the residual is small enough;
(ii) the (fixed) maximal number of iterations allowed is attained;

(iii) a direction of negative curvature is encountered.

The last two criteria are trivial to implement (although they require a careful choice of the pa-
rameters). The first criterion is more awkward, since it should incorporate information from
the outer iterations. For our numerical experiments, we chose the following implementation
due to [7].

At the k-th outer iteration, exit inner loop if the residual r satisfies

‖r‖ ≤ min{c/k, ‖gk‖}‖gk‖,

where gk denotes the right-hand side of the Newton equation at step k, and c is a real number
around 0.5. Note that this criterion becomes more restrictive as k increases.

We describe below the outer and inner iterations of the truncated Newton algorithm.

Algorithm 6 (TN algorithm for computing the largest eigenpair)
Outer iteration:

Choose x0 ∈ R
n\{0}. For k ≥ 0, do

• Solve (approximatively)

(
RA(xk)In + 2RA(xk)

xk xT
k

‖xk‖2
− A

)
dk = Axk − RA(xk)xk ;

• Line search: Compute an acceptable new iterate xk+1 from xk and dk.
Inner iteration:

For the sake of simplicity, we denote by Hk the matrix in the Newton equation, and by
gk the right-hand side.
Set p0 := 0, r0 := −gk, and s0 := r0. For i ≥ 0 do
• αi := ‖ri‖2/〈Hksi , si 〉; (step length)
• pi+1 := pi + αi si ; (approximate solution)
• ri+1 := ri − αi Hksi ; (residual )
• Termination test:
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if RHk (si ) < 0, exit with dk := pi+1;
if i > maximal number of iterations, exit with dk := pi+1;
if ‖ri+1‖ ≤ min{c/k, ‖gk‖}‖gk‖, exit with dk := pi+1;

• Else
set βi := ‖ri+1‖2/‖ri‖2, and (improvement at this step)
si+1 := ri+1 + βi si . (search direction)

Generally, after detection of a negative curvature direction, si , the CG process returns
dk := pi . However, for our purposes (remember that we wish to compute the largest
eigenpair), the negative curvature direction is an interesting direction, and is then incor-
porated in the (outer) descent direction. Indeed, assume that si satifies RHk (si ) < 0, this
implies

RA(xk)‖si‖2 + 2RA(xk)
〈xk, si 〉2

‖xk‖2
− 〈Asi , si 〉 < 0,

and thus,

RA(xk) + 2RA(xk)

[ 〈xk, si 〉
‖xk‖‖si‖

]2

< RA(si ).

A first straightforward implication of the above inequality is that RA(si ) > RA(xk). Hence,
si has larger components in the space spanned by the eigenvectors associated with the
largest eigenvalues than xk . Consequently, si contains useful information relative to the
largest eigenvalues. Moreover, this inequality yields

|〈xk, si 〉|
‖xk‖‖si‖ <

[
RA(si ) − RA(xk)

2RA(xk)

]1/2

,

and thus the angle between xk and si is monitored by the right-hand side, and cannot be
too small. To conclude this subsection, we simply mention that, contrary to the previous
methods, the truncated Newton method allows the use of a preconditioner to accelerate the
convergence in the inner iterations. In practice, such a feature should be used to improve
the convergence of the whole algorithm.

3.5. The line-search procedure

The line search is an essential step in any (globally convergent) optimization algorithm. It
generally ensures the convergence of the algorithm to a stationary point (in general, a local
minimizer) from any starting point. There exists various (inexact) line-search strategies, such
as the Wolfe line-search, or the backtracking strategy [4]. Here, however, we concentrate
on an exact line search. Such a strategy can rarely be used for minimizing general nonlinear
functions, since it requires the exact (expensive) solution of a one-dimensional minimization
problem.
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As we shall see, an exact line search can be implemented for free in our situation. Given
x , d ∈ R

n , we wish to solve the following one-dimensional problem

min
t∈R

PA(x + td)

(note that we do not restrict t to be positive, since this constraint yields no improvement in
practice, and would complicate our exposition). When coupled with a radial minimization
step (cf. Section 3.2), this provides an improved iterate x+ := r̄ (x + t̄d), where t̄ is a global
minimizer of PA(x + td), and r̄ is the minimum point of PA(r (x + t d̄)). Note that the new
iterate lies in the subspace spanned by x and d.

What is the result of the exact line-search procedure when applied to the Rayleigh quo-
tient? Again, we look for the solution of

max
t∈R

RA(x + td),

(remember that minimization of PA is related to maximization of RA). Because of the
homogeneity of RA, the above problem is equivalent to maximizing RA on the subspace
spanned by x and d . However, the analogue is not true for PA, since it is not homogeneous.
Clearly, the coupled exact line search/radial minimization provides a new iterate which is
worst than the one produced by the minimization of PA on the subspace spanned by x and
d (henceforth, we denote this subspace by V (x, d)).

Moreover, the computational (and storage) requirements for both approaches are similar.
Thus, it seems natural to opt for the exact minimization of PA on V (x, d), rather than for
the exact line search/radial minimization procedure.

How does one compute x+ (the new iterate) in practice? Let R be a 2-by-n matrix whose
columns form an orthonormal basis of V (x, d). Then, minimizing PA on V (x, d) reduces to
the minimization of PRT AR on R

2. If we denote by v the solution of the latter problem, then
x+ = Rv. Note that v is the eigenvector of the reduced matrix T := RT AR corresponding
to the largest eigenvalue, and of norm ‖v‖ = √

λmax(T ) (see Theorem 2.2).
Thus, our special “line”-search procedure can be summarized as follows:

• Given x , d , compute R such that RT R = I2 and Range(R) = V (x, d);
• Compute T := RT AR, and v, an eigenvector associated with the largest eigenvalue and

of norm ‖v‖ = √
λmax(T );

• Set x+ := Rv.

3.6. A multi-dimensional search procedure

At step k of any descent algorithm, the current iterate is of the form

xk+1 = x0 + t1d1 + · · · + tkdk,

where x0 is the initial iterate, di , i = 1, 2, . . . , k, are the previous search directions, and
ti , i = 1, 2, . . . , k, are positive step lengths computed by a line-search procedure. A
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natural extension of the approach presented in the previous subsection would be to replace
the k one-dimensional minimizations required to compute xk , with one multi-dimensional
minimization. That is, to compute at every step

xk+1 := argmin{PA(x) | x ∈ V (x0, d1, . . . , dk)},

where V (x0, d1, . . . , dk) denotes the k + 1-dimensional subspace spanned by x0, d1 . . . , dk .
It is obvious that such a step would result in a much faster (in terms of number of outer
iterations) minimization algorithm than one using a standard line search. The cost of such
a multi-dimensional search procedure is clearly prohibitive in standard minimization algo-
rithms for general nonlinear functions.

Nevertheless, the special structure of our objective function allows the implementa-
tion of such a strategy at a reasonable cost. Indeed, let R be a (k + 1)-by-n matrix
whose columns form an orthonormal basis of V (x0, d1, . . . , dk). Then, xk+1 = Rv, where
v is the minimum of the reduced cost function PRT AR . According to Theorem 2.2, v

is an eigenvector of T := RT AR associated with the largest eigenvalue and of norm
‖v‖ = √

λmax(T ).
Thus, the whole procedure requires (assuming that RT AR is available) the computa-

tion of the largest eigenpair of a reduced (k + 1)-by-(k + 1) matrix (keep in mind that
k � n), which can be done in O(k) flops (by using for instance a coupled bisection/inverse
iteration algorithm [8]), and the matrix-vector multiplication Rv, which requires 2kn
flops.

Of course, it is not desirable to extract an orthonormal basis of the search space, and to
form the reduced matrix RT AR at every iteration (the former requires O(k2n) flops, using
the modified Gram-Schmidt algorithm, and the latter O(k2n) flops and k matrix-vector
multiplications involving A). Then, an “updating strategy” should be implemented to make
this search procedure affordable.

Such a strategy has already been implemented for the quasi-Newton method (cf.
Section 3.3). Therefore, the multi-dimensional search (MDS) procedure can be summa-
rized as follows:

At step k + 1 of a minimization algorithm, let dk , Adk , Rk , Sk(:= ARk), and Tk be
given;

• Update Rk → Rk+1, Sk → Sk+1, and Tk → Tk+1, as indicated in Section 3.3;
• Compute (σk+1, vk+1), the largest eigenpair of the reduced matrix Tk+1, with ‖vk+1‖2 =

σk+1;
• Set xk+1 := Rk+1vk+1, and RA(xk+1) := σk+1;

Note that the radial minimization step is useless when using MDS, since MDS provides a
radially-minimized solution. It is interesting to observe that the above procedure coincides
with the well-known Ritz procedure commonly used in Krylov subspace methods such as
Lanczos’ or Arnoldi’s algorithms [8].

In the next subsections, we replace the line-search step with the MDS step in the different
algorithms we considered in the previous subsections.
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3.6.1. The steepest descent algorithm with MDS (SD-MDS)

Algorithm 7
Choose x0 ∈ R

n\{0}, and set σ0 := RA(x0), R0 := x0/‖x0‖, S0 := Ax0/‖x0‖, T0 := σ0;
For k ≥ 0, do
• Compute dk := Axk − σk xk ;
• Use MDS to update Rk, Sk, Tk, and compute xk+1, σk+1, and Axk+1.

This algorithm is equivalent to the well-known Lanczos algorithm, which is one of the
most efficient, robust, and adapted method for computing a few largest eigenpairs of a (very)
large symmetric matrix. We compared it with the steepest descent method with the exact
(bi-dimensional) “line”-search procedure described in Section 3.5. The MDS step leads to
a very significant improvement, as we shall see in the Numerical experiments subsection
(Section 3.8).

3.6.2. The quasi-Newton algorithm with MDS (QN-MDS). Despite the fact that the ap-
proximation (10) of the Hessian, Mk+1, is positive definite in the MDS situation (since
‖xk+1‖2 = ‖vk+1‖2 = λmax(Tk)), the quasi-Newton method coupled with the MDS strat-
egy gives rise to a disappointing algorithm. Indeed, we tested it on many instances, and it
systematically gave results which are identical (i.e. identical number of iterations, identical
final solution) to results obtained with the steepest descent with MDS. Thus, it seems that
the quasi-Newton matrix yields no improvement compared with the identity matrix in this
situation. We also tested a multi-secant BFGS approximation of A (which is not guaranteed
to produce a positive definite approximation of the Hessian), and the results we obtained
were not better.

This phenomenon may be explained, by the fact that the information contained in the
quasi-Newton matrix, has already been exploited by the MDS. Thus, the quasi-Newton
matrix offers no additional information compared with the identity matrix.

However, we see next how the quasi-Newton matrix may be exploited in order to improve
the truncated Newton algorithm.

3.6.3. The truncated Newton algorithm with MDS (TN-MDS). As for the steepest de-
scent, the MDS procedure leads to a significant improvement compared with the “line”-
search strategy (considered in Section 3.5) when implemented within the truncated Newton
algorithm, as we shall see in the Numerical experiments subsection (Section 3.8). This results
in a promising algorithm which, in many situations, is competitive and even more efficient
than the steepest descent algorithm with MDS (the latter being equivalent to the Lanczos
algorithm). Our computational experiments will clearly illustrate that when comparing the
number of outer iterations, TN-MDS converges much faster than SD-MDS. However, it
is the number of inner (CG) iterations which corresponds to the number of matrix-vector
multiplications. Hence, TN-MDS requires more matrix-vector products than SD-MDS in
all our tests. This is due to the fact that SD-MDS stores much more information about A
(by the way of MDS) than TN-MDS, which only retains information from outer iterations.
Nevertheless, a feature of the TN method is that it allows the use of a preconditioner in
order to reduce appreciably, the number of iterations in inner loops (for instance, one could
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use the quasi-Newton approximation of the inverse of the Hessian we proposed in (10)).
Thus, a more reliable criterion of comparison would, in fact, not be the number of inner
iterations, but rather the number of outer iterations.

3.7. Limited-memory strategies

As seen in the previous subsections, the multi-dimensional search procedure is very efficient
when coupled with the steepest descent or the truncated Newton method. Unfortunately,
it requires a large amount of storage: in particular, at step k, we have to store two k-by-
n matrices. When the size of the matrix A is (very) large (this is precisely the situation
in which we are interested), storage limitation may render it impossible to store the two
previous matrices when k becomes large (which is likely to happen if the largest eigenvalues
of A are poorly separated).

Of course, this shortcoming should not prevent the use of this efficient search strategy.
However, we are forced to define strategies for selecting a predefined number (say m) of
vectors (in fact pairs of vectors) from the whole search space. A strategy which is common in
optimization (for quasi-Newton methods) consists in storing the most recent pairs {di , Adi }
(the di ’s are the previous search directions), since earlier pairs are less likely to be relevant
to the actual behaviour of the Hessian at the current point. Are there better strategies for
our particular cost function?

First, note that the first m iterations of a limited-memory algorithm are the same as those
of the full-memory version. At the beginning of step m +1, the available storage is full. The
first strategy we propose is the “classical one”, that consists in removing the oldest pair, and
saving the new one. This strategy will be referred to as the FIFO (First In First Out) selection.

An alternative approach is to control the selection of the pairs according to the Rayleigh
quotients. Indeed, remember that we are concerned with the computation of the largest
eigenpair of A. Therefore, it seems natural to keep, in the search subspace, directions
with large components in the direction of the eigenvectors corresponding to the largest
eigenvalues, that is, the directions with a large Rayleigh quotient. This method will be
referred to as the Rayleigh quotient selection. Note that this approach requires very little
additional computation, since we only have to compute the Rayleigh quotient of the new
pair at each iteration (the matrix-vector multiplication involved being already computed).

The third method is an extension of the previous one. It is based on the following idea:
why should we select m directions amongst the m + 1 given vectors, when it would be
advantageous to select them in the subspace spanned by these m + 1 vectors? This new
strategy is described in detail below:

• We have at our disposal m old pairs {di , Adi }1≤i≤m , and a new pair {dm+1, Adm+1};
• Compute R, an orthonormal basis of the extended search subspace spanned by

{di }1≤i≤m+1;
• Compute the eigendecomposition of the (m + 1)-by-(m + 1) matrix T := RT AR;
• Let W be the (m + 1)-by-m matrix whose columns are the eigenvectors of T associated

with the m largest eigenvalues;
• Compute [d̂1, . . . , d̂m] := RW , and [Ad̂1, . . . , Ad̂m] := (AR)W .
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At the end of this procedure, we have m new pairs {d̂ i , Ad̂i }1≤i≤m which are linear combi-
nations of the m + 1 pairs {di , Adi }1≤i≤m+1. By construction, the search space, spanned by
the new directions, contains more information relative to the largest eigenpairs of A than
the previous ones. It is also clear that it provides a better search space than the first two
strategies we considered. However, it requires a more significant computational effort. The
above algorithm will be referred to as the Ritz value selection.

An essential point is that it is necessary that the new search space contains the pair
{xk, Axk} (xk denotes the last iterate) when using any of the above strategies, since we have
been forced to discard some older search directions.

Now, assume that we are implementing the MDS procedure as in Section 3.6. Therefore,
we no longer store previously computed directions, but rather an orthonormal basis of the
current search space. It is therefore out of the question to use the FIFO selection in such a
situation. Moreover, in this case, the Rayleigh quotient selection and the Ritz value selection
are equivalent, since the stored directions are related to the eigenvectors of the projection
of A onto the search space. Note also that there is no reason to store the additional pair
{xk, Axk}, since xk is already contained in the search space.

A feature of our limited-memory approaches is that, when coupled with the MDS proce-
dure, they yield, for m = 1, the (bi-dimensional) “line” search analyzed in Section 3.5 (for
m = 1, the three strategies are of course equivalent).

It may be useful to retain some information from discarded pairs. For that purpose,
Nazareth et al. [15] proposed to use a quasi-Cauchy algorithm (a kind of quasi-Newton
algorithm where the updated matrices are restricted to be diagonal). Such a method requires
only the storage of an n-dimensional vector, and has been shown to be very efficient when
implemented within the steepest descent algorithm. Thus, this diagonal updating strategy
should be implemented with the limited-memory steepest descent with MDS. The resulting
algorithm may provide an interesting alternative to the (full-memory) Lanczos method
which requires too large an amount of storage for very large problems, especially when the
largest eigenvalues are poorly separated.

Indeed, we performed some numerical experiments which clearly show that the efficiency
of the steepest descent with MDS deteriorates significantly when the whole search space
is not used in the MDS procedure. The limited-memory approach (with the efficient Ritz
value selection) with small values for m leads to a slowly convergent algorithm, and using
larger m greatly improves the convergence (see first column of Table 2).

However, in our opinion, the most promising algorithm is the limited-memory truncated
Newton method with MDS. The numerical comparison (see Tables 2 and 3) clearly shows
that it behaves much better in our large-scale context than the steepest descent with MDS.
Moreover, certain features, such as its potential for the use of preconditioning techniques
to improve the convergence in inner loops, make it very attractive.

3.8. Numerical experiments

We implemented on Matlab the limited-memory (with the Ritz value selection) version of
the two most promising algorithms introduced in this paper: the truncated Newton method
and the steepest descent method, both using the multi-dimensional search procedure, the
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Table 1. Test matrices.

Matrix name Dimension Non-zero entries

NOS1 237 627

NOS2 957 2547

NOS3 960 8402

NOS4 100 347

NOS5 468 2820

NOS6 675 1965

NOS7 729 2673

Table 2. Impact of the storage on the number of iterations.

TN-MDS

m SD-MDS Outer Inner

1 5282 18 277

5 721 14 226

10 327 14 229

30 111 14 229

50 89 14 229

∞ 82 14 229

latter being thus equivalent to Lanczos. We tested both algorithms on the matrices described
in Table 1. These matrices come from the Matrix Market [13]: set LANPRO (Lanczos with
partial reorthogonalization). We are concerned with the number of matrix-vector multipli-
cations required to converge to the largest eigenpair. This corresponds to the number of
iterations in the case of SD (and SD-MDS), and to the number of inner iterations in the
case of TN (and TN-MDS).

In our first experiments, we analyze the impact of varying the value of the storage
parameter, m, on the number of iterations, for both TN-MDS and SD-MDS algorithms. We
used the matrix NOS1, and we used as a stopping rule, the following: the optimization stops
when the current eigenvector estimate, x , and the current eigenvalue estimate, λ, are such that

‖Ax − λx‖
λ‖x‖ < ε, (12)

where ε is some pre-specified tolerance. We set ε to 10−9, and the initial point was
(1, . . . , 1)T (the initial point for the CG subroutine in TN-MDS was always (0, . . . , 0)T ,
although a practical implementation would rather use a “warm start”). The results are
presented in Table 2, where m = ∞ refers to the full-memory algorithms, and m = 1
corresponds to algorithms SD and TN (using the “line”-search procedure described in
Section 3.5).
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Table 3. Comparison of the number of iterations on a sequence of test matrices.

m = 1 m = ∞

TN TN-MDS

Matrix SD Outer Inner
SD-MDS
(≡ Lanczos) Outer Inner

NOS1 8502 20 368 83 16 280

NOS2 >10000 67 2775 321 23 783

NOS3 1541 20 198 93 17 190

NOS4 591 12 139 58 9 135

NOS5 351 12 88 43 12 86

NOS6 652 17 137 60 17 147

NOS7 87 14 39 19 14 36

These results clearly show that the performance of SD-MDS deteriorates significantly
when we reduce the storage (the convergence becomes very slow for m = 1), whereas the
TN-MDS algorithm does not suffer from storage limitation (this can be explained by the
fact that fewer (outer) iterations are necessary for TN (compared to SD) to converge to a
fixed accuracy). Note that naturally, once m is greater than the number of (outer) iterations,
increasing m further has no effect. As previously mentioned, the use of a preconditioner for
solving the CG (inner loop) subproblem, should bring down the number of inner iterations
per outer iteration. That is why we expect that (a small multiple of) the number of outer
iterations is a more reliable criterion for comparison. Thus, TN-MDS appears to have
potential for improvement over, for instance, the Lanczos method (SD-MDS, m = ∞).

Similar conclusions can be drawn from Table 3, which reports analogous results (stopping
criterion: ε = 10−12) on several test matrices, and with the extreme values m = 1 and
m = ∞ for the storage parameter.

In Table 4, we report the number of iterations required by TN-MDS to converge (tolerance:
ε = 10−11) with the test matrix NOS1. In these experiments, we vary the value of the limited-
memory parameter, m, as well as the maximal number of inner (CG) iterations (remember

Table 4. Number of iterations of TN-MDS with respect to storage and maximal number of CG iterations.

Maximal number of CG iterations

5 10 20 30 ∞

m Outer Inner Outer Inner Outer Inner Outer Inner Outer Inner

1 388 1547 59 505 38 595 24 439 20 368

5 65 255 24 191 18 249 16 268 15 263

10 41 159 22 173 18 247 16 252 15 250

∞ 33 127 22 173 17 225 16 251 15 250
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that this is only one of the three stopping rules used in the CG algorithm—cf. Section 3.4).
When setting m = 1 (i.e. when using the (bi-dimensional) “line” search), it seems to be
beneficial to use a large value for the maximal number of inner loops, that is to say to solve
with high accuracy the Newton equation when close to the solution. For the full-memory
version (m = ∞), the situation is completely different; limiting the number of inner loops
results in faster convergence.

4. Conclusion

In this paper, we first reviewed non-homogeneous objective functions, as alternatives to the
usual Rayleigh quotient, for computing eigenelements via (unconstrained) optimization.
Two of these functions (SA and PA) were introduced by Auchmuty. We introduced a third
one (L A), and we described the variational properties of these functions. A feature of the
proposed non-homogeneous formulations (namely the non-singularity of their Hessian at
minimum points) allowed specialization, of standard and recent optimization techniques,
into efficient methods for computing the largest eigenpair. According to the preliminary
numerical experiments we presented, this work leads the way to improvement to the stan-
dard Lanczos method for computing the largest eigenpair of (very) large real symmetric
matrices. Such benefits could be twofold. Firstly, in terms of speed of convergence (number
of matrix-vector products) with our algorithm TN-MDS (a truncated Newton method with
multi-dimensional search, specialized to one of the proposed non-homogeneous objective
functions). Secondly, in terms of the size of problems that can be addressed, through the
use of a limited-memory version of TN-MDS.

We saw that the alternative objective functions we presented, can easily be adapted for
solving the generalized eigenproblem Ax = λBx . Indeed, even in this more general context,
only matrix-vector products are involved (no factorization of B is required). This makes the
optimization approach to the eigenproblem particularly well suited for practical problems
involving very large matrices.

In order to obtain methods for computing the condition number and the width of the spec-
trum of a real symmetric matrix, using (unconstrained) optimization, we derived analogous
non-homogeneous variational principles (details can be found in Section 5 of [14]).
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